Math 55 Quiz 1 DIS 105

Name: \qquad

1. Let $C(x, y)$ be the statement "Person x has been to country y." Express each of these sentences in terms of $C(x, y)$, quantifiers, and logical connectives, where the domain for x consists of everyone in the world and for y consists of all countries.
(a) John has been to France, Germany, and Italy. [2 points]
(b) Everyone has been to at least two different countries. [2 points]
(c) There exists someone who has been to every country in the world except for the USA. [3 points]
(a) C (John,France) $\wedge C($ John,Germany $) \wedge C$ (John,Italy $)$
(b) $\forall x \exists y_{1} \exists y_{2} C\left(x, y_{1}\right) \wedge C\left(x, y_{2}\right) \wedge\left(y_{1} \neq y_{2}\right)$
(c) $\exists x(\forall y(C(x, y) \vee(y=$ the USA $))) \wedge \neg C(x$, the USA $)$
2. Prove that if x is an odd number, then $x^{2}+x+1$ is an odd number. [3 points]

Suppose x is an odd number. Then there exists an integer n such that $x=2 n+1$. Then $x^{2}+x+1=(2 n+1)^{2}+(2 n+1)+1=4 n^{2}+6 n+3=2\left(2 n^{2}+3 n+1\right)+1$, where $2 n^{2}+3 n+1$ is an odd number. Hence $x^{2}+x+1$ is an odd number.

